Hepatic miR-29ab1 expression modulates chronic hepatic injury
نویسندگان
چکیده
MicroRNAs (miRNAs) are small, regulatory non-coding RNAs that have potent effects on gene expression. Several miRNA are deregulated in cellular processes involved in human liver diseases and regulation of cellular processes. Recent studies have identified the involvement of miR-29 in hepatic fibrosis and carcinogenesis. Although several targets of miR-29 have been identified, there is limited information regarding the cell-type specific roles of miR-29 in the liver, and we sought to evaluate the role of this miRNA in hepatic pathobiology. We report the generation of a tissue-specific knockout mouse to evaluate the role of miR-29 in hepatic fibrosis and carcinogenesis in response to injury. We hypothesized that miR-29 contributes to the hepatocyte driven response to chronic cellular injury that results in fibrosis. In support of this hypothesis, fibrosis and mortality were enhanced in miR29 knockout mice in response to carbon tetrachloride. Genome-wide gene expression analysis identified an over-representation of genes associated with fibrosis. The oncofetal RNA H19 was modulated in a miR-29 dependent manner following exposure to carbon tetrachloride in vivo. The impact of a hepatocyte specific miR-29 knockout on survival following chronic hepatic injury in vivo implicates this miRNA as a potential target for intervention. These results provide evidence of the involvement of miR-29 in chronic hepatic injury, and suggest a role for deregulated hepatocyte expression of miR-29 in the response to hepatic injury, fibrosis and carcinogenesis.
منابع مشابه
The protective effect of bone marrow-derived mesenchymal stem cells in liver ischemia/reperfusion injury via down-regulation of miR-370
Objective(s): Liver transplantation is the most important therapy for end-stage liver disease and ischemia reperfusion (I/R) injury is indeed a risk factor for hepatic failure after grafting. The role of miRNAs in I/R is not completely understood. The aim of this study was to investigate the potential protective role of the mesenchymal stem cells (MSCs) and ischemic pr...
متن کاملEpigallocatechin-3-Gallate Upregulates miR-221 to Inhibit Osteopontin-Dependent Hepatic Fibrosis
Osteopontin (OPN) promotes hepatic fibrosis, and developing therapies targeting OPN expression in settings of hepatic injury holds promise. The polyphenol epigallocatechin-3-gallate (EGCG), found in high concentrations in green tea, downregulates OPN expression through OPN mRNA degradation, but the mechanism is unknown. Previous work has shown that microRNAs can decrease OPN mRNA levels, and ot...
متن کاملHepatic expression of miR-122 and antioxidant genes in patients with chronic hepatitis B.
INTRODUCTION The pathogenesis of chronic hepatitis B depends on both, the immune response and oxidative stress. AIM OF THE STUDY To assess the hepatic expression of miR-122 and the antioxidant genes: HMOX-1, NQO1 and GFER1, in liver biopsy specimens obtained from patients with chronic hepatitis B, with regard to selected clinical and histological parameters, using RT-PCR. RESULTS The study ...
متن کاملGallic acid protects the liver in rats against injuries induced by transient ischemia-reperfusion through regulating microRNAs expressions
Objective(s): Gallic acid (GA) is a highly effective antioxidant, which its beneficial effects are well known, but its impact on expression of microRNAs (miRs) following hepatic ischemia-reperfusion (I/R) is not well recognized. Therefore, the current research was designed to specify the beneficial effect of GA on miRs (122 and 34a), liver functional tests, and histopathological alterations bey...
متن کاملOriganum Majoranum Extract Modulates Gene Expression, Hepatic and Renal Changes in a Rat Model of Type 2 Diabetes
The present study was conducted to test the effect of Origanum Majoranum Extract (OME) of leaves on alterations induced in a model of type 2 diabetic rats. Adult male Wistar rats were fed high fat diet for 3 weeks and injected a single dose of streptozotocin (35 mg/kg) intraperitoneally to induce type 2 diabetic rats. Diabetic rats were given aqueous extract of OME in a dose of 20 mg/kg orally ...
متن کامل